AMP-activated protein kinase activation by AICAR increases both muscle fatty acid and glucose uptake in white muscle of insulin-resistant rats in vivo.
نویسندگان
چکیده
Insulin-stimulated glucose uptake is increased in white but not red muscle of insulin-resistant high-fat-fed (HF) rats after administration of the AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). To investigate whether a lesser AICAR effect on glucose uptake in red muscle was offset by a greater effect on fatty acid (FA) uptake, we examined acute effects of AICAR on muscle glucose and FA fluxes in HF rats. HF rats received AICAR (250 mg/kg) subcutaneously. At 30 min, a mixture of either (3)H-(R)-2-bromopalmitate/(14)C-palmitate or (3)H-2-deoxyglucose/(14)C-glucose was administered intravenously to assess muscle FA and glucose uptake. AICAR decreased plasma levels of glucose (approximately 25%), insulin (approximately 60%), and FAs (approximately 30%) at various times over the next 46 min (P < 0.05 vs. controls). In white muscle, AICAR increased both FA (2.4-fold) and glucose uptake (4.9-fold), associated with increased glycogen synthesis (6-fold). These effects were not observed in red muscle. We conclude that both glucose and FA fluxes are enhanced by AICAR more in white versus red muscle, consistent with the relative degree of activation of AMPK. Therefore, a lesser effect of AICAR to alleviate muscle insulin resistance in red versus white muscle is not explained by a relatively greater effect on FA uptake in the red muscle.
منابع مشابه
Effect of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats.
Activation of AMP-activated protein kinase (AMPK) with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofurano-side (AICAR) increases glucose transport in skeletal muscle via an insulin-independent pathway. To examine the effects of AMPK activation on skeletal muscle glucose transport activity and whole-body carbohydrate and lipid metabolism in an insulin-resistant rat model, awake obese Zuckerfa/fa...
متن کاملThe AMP-activated protein kinase activator AICAR does not induce GLUT4 translocation to transverse tubules but stimulates glucose uptake and p38 mitogen- activated protein kinases and in skeletal muscle
The AMP-activated protein kinase (AMPK) pathway participates in the metabolic effects of contraction on muscle glucose uptake. We have shown that contraction increases both GLUT4 translocation to the cell surface and p38 mitogen-activated protein kinase (p38 MAPK) activity. The latter pathway may be involved in the activation of GLUT4. Here we investigated whether the AMPK activator AICAR incre...
متن کاملRegulation of fatty acid oxidation and glucose metabolism in rat soleus muscle: effects of AICAR.
Previous studies have shown that 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a cell-permeable activator of AMP-activated protein kinase, increases the rate of fatty acid oxidation in skeletal muscle of fed rats. The present study investigated the mechanism by which this occurs and, in particular, whether changes in the activity of malonyl-CoA decarboxylase (MCD) and the beta-isoform ...
متن کاملThe Effect of Eight Weeks Aerobic and Resistance Training on AMP-Activated Protein Kinase (AMPK) Gene Expression in Soleus Muscle and Insulin Resistance of STZ-Induced Diabetic Rat
Background: AMPK regulation is one of biggest target in T2D and metabolic syndrome research. Therefore, the present study is aimed to investigate The effect of 8 weeks aerobic and Resistance training on AMP-activated protein kinase (AMPK) gene expression in soleus muscle and insulin resistance of STZ-induced diabetic rat. Methods: The research method of present study was experimental. For this...
متن کاملAICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle.
5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) has previously been reported to be taken up into cells and phosphorylated to form ZMP, an analog of 5'-AMP. This study was designed to determine whether AICAR can activate AMP-activated protein kinase (AMPK) in skeletal muscle with consequent phosphorylation of acetyl-CoA carboxylase (ACC), decrease in malonyl-CoA, and increase in fatty acid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 53 7 شماره
صفحات -
تاریخ انتشار 2004